
Power Platform

Power Platform

A Step by Step Guide to

Developing PCF Controls

Contents

01 Introduction

01 Introduction

02 Prerequisites

02 Design

04 Components

05 Manifest File

07 Typescript File

09 Additional Resource Files

03 Develop

10 Introduction and Preparation

12 Update the Manifest File

14 Code the Component File

22 Design the Style of the Component

04 Test

24 Test the control

05 Build and Deploy

26 Build the solution

29 Install the solution

Contributions

33 Contributions

34 Resources

1 | P a g e

Introduction
PowerApps Component Framework are used to create code components for model-driven apps and canvas

apps (preview) in order to provide an enhanced user experience for users to view and work with data in forms,

views and dashboards. PowerApps Component Framework controls can be used in the Unified Interface of

Dynamics 365.

2 | P a g e

Prerequisites
The following steps are required in order to start developing PowerApps Component Framework custom

controls.

Developer Command Prompt for Visual Studio 2017

The Developer Command Prompt for Visual Studio 2017 is required to performs build tasks on your PowerApps

Component Framework (PCF) custom control. For learning purposes you can download the Community Edition

or a trial version of Visual Studio 2017, or if you already have Visual Studio 2017 Professional or Enterprise

edition you can use that.

If you are using Visual Studio 2019, you can use either the Developer Command Prompt for Visual Studio 2019

or Developer PowerShell for Visual Studio 2019.

Download and Install Node.js

Node.js is an asynchronous even driven JavaScript runtime that is designed to build scalable network

applications. In order to develop custom controls for Model-driven applications, we will need to use node.js in

order to execute certain requests.

To download node.js, navigate to http://nodejs.org/en, and download the LTS version, which is the

recommended version for most users, and what is required for this lab.

After you have downloaded installer file, go ahead and complete the installation of node.js.

http://nodejs.org/en

3 | P a g e

PowerApps Command Line Interface

The Microsoft PowerApps CLI is a developer command line interface that enables developers to build custom

components for PowerApps faster and more efficiently. You can learn more about the PowerApps CLI here, and

then download it from nuget (https://www.nuget.org/packages/Microsoft.PowerApps.CLI).

If this is your first time installing or downloading Microsoft PowerApps CLI, you can download the msi file from

the Microsoft web site, by following the link below:

https://aka.ms/PowerAppsCLI

After you have finished download the installation file, install the Command Line Interface.

https://powerapps.microsoft.com/en-us/blog/the-powerapps-component-framework-and-the-powerapps-cli-is-now-available-for-public-preview/
https://www.nuget.org/packages/Microsoft.PowerApps.CLI
https://aka.ms/PowerAppsCLI

4 | P a g e

Components
There are a few files that make up a PowerApps Component Framework custom control project. The two

primary files that make up the control are the manifest file and the typescript file.

The manifest file is an Xml file which contains information about the namespace of the control, the properties

of the control and the resources that make up the control which include the name of the typescript file, and

any stylesheet or resource files that are included with part of the project.

The typescript file…

The stylesheet …

The resource file…

5 | P a g e

Manifest File
The manifest file is an Xml file which contains information about the namespace of the control, the properties

of the control and the resources that make up the control which include the name of the typescript file, and

any stylesheet or resource files that are included with part of the project.

The Control Element

The control element contains the namespace and the constructor which were provided when creating the

component using the pac pcf init command.

The display-name-key is what will appear inside of properties of the control inside Dynamics form editor, when

selecting the controls tab, and adding a different control to display on web, mobile or tablet.

The description-key is the description that will show up inside of the control properties within Dynamics form

editor. The text below shown us the content of the control tag after adding the correct values to the display-

name-key and description-key attributes.

<control namespace="PCFNamespace" constructor="PCFConstructor" version="0.0.1" display-name-key=
"PCFNamespace.PCFConstructor" description-key="Custom Control for PCF" control-type="standard">

The Property Element

By default, when a new PCF custom control project is created, only a single property is available. A PCF control

can include multiple properties for different types of controls. The manifest file contains by default the

following Xml for the property:

<property name="sampleProperty" display-name-key="Property_Display_Key" description-
key="Property_Desc_Key" of-type="SingleLine.Text" usage="bound" required="true" />

6 | P a g e

The following are the attributes of the property element:

 Name – this is the name of the property, which will be referred to from the typescript file in order to

read and update content from the control.

 Display Name Key – this is the name of the property that would appear within Dynamics.

 Description Key – this is the description of the property that would appear within Dynamics

 Of Type – this attribute represents the data type of the property. When the usage of the of-type

attribute is set to bound, then you bind it to the corresponding field within Dynamics. The of-type

attribute can contains values such as Currency, DateAndTime, Decimal, Enum and more. The full list is

available on the Microsoft Document site.

 Usage – this attribute can be either bound as previously stated, which means that this property is

bound to a control within Dynamics or input which means that it will be used for read-only values.

The Resources Element

The final part is the resources. There are no changes required to the resources if your control will only be using

the index.ts code file as it is already specified in the manifest file. The code element contains the location of the

file where we will develop the custom control and build the HTML elements for it, as well as create the events

of what happens to the control when interacted with such as on a click event or a change event.

The other two elements which are includes in the manifest file and are part of the parent resources element are

css and resx. The css is the stylesheet that will be used for the control. This is not required, but if you want your

control to blend in to the Unified Interface and look somewhat like other controls on the form, this is highly

recommended.

You can also use existing styles that are available in Unified Interface and link them to the control itself. You will

see this in the next sections. The resx is a file that contains localized content in order to display data for the

control in additiona languages. For the purpose of this demo, we will not use it.

The unchanged resources element looks like this:

<resources>
 <code path="index.ts" order="1"/>
 <!-- UNCOMMENT TO ADD MORE RESOURCES
 <css path="css/filename.css" order="1" />
 <resx path="strings/filename.1033.resx" version="1.0.0" />
 -->
</resources>

https://docs.microsoft.com/en-us/powerapps/developer/component-framework/manifest-schema-reference/type

7 | P a g e

Typescript File
Same as the automatic generation of the Manifest file, the index.ts file is also generated for us when we call the

pac pcf init with the method signatures that we need to implement. Even if you don’t know typescript, this is

something that you should be able to grasp pretty quickly, especially for users with JavaScript experience.

The newly created component library (Typescript file) implements the following methods (which control the

lifecycle of the code component): init, updateView, getOutputs, destroy. The getOutputs method is optional.

The init method

The init method is used to initialize the component instance. This is where the component can initialize

particular actions or remote server calls. The init method accepts four parameters:

Parameter Name Type Required Description

context Context yes Includes the Input Properties containing the parameters,

component metadata and interface functions

notifyOutputChanged function no Notifies the framework that it has new output

state Dictionary no State is saved from setControlState in previous session

container HTMLDivElement no This is the div element to render

The updateView method

The updateView method is called whenever any value in the property bag is changed. This includes field values,

datasets, global values (such as the container height and width), component metadata values (such as labels,

visibility) and so on.

The updateView contains a single context parameter which contains the values that are mapped to the name

that is defined in the manifest as well as in the utility functions.

8 | P a g e

The getOutputs method

The getOutput method is called by the framework before the component receives new data. It returns an

object (as defined in the manifest). The object that is defined in the manifest file must be of type bound or

output.

The destroy method

The destroy method is called when the component is removed from the DOM and is used for cleanup and

release of any memory that the component is using.

9 | P a g e

Additional Resource Files
Add Content about Stylesheets and Resx files here.

10 | P a g e

Intro and Preparation
The next few chapters will go through the process from beginning to end of creating a custom control, testing

it, creating a solution from the component that can be deployed into your Model-driven application, and finally

customizing the form so that it will appear in the model driven application.

We will create in these next few chapters a credit card validation control, which will validate the user input on

the CRM form, and will display the logo of the selected credit card or a validation error message if the credit

card number is invalid.

Create the required files

To start this application, we will start by creating the required folders and files and calling the necessary

commands to create the files. We will first start by creating the folder. You can create this anywhere on your

local hard drive, but in our case, this was created in the following directory. We will use this location for later

updating this solution.

In our case we will use Visual Studio Code to perform that required action. Open Visual Studio Code and from

the Home Page Start click on Open folder…

Select the location of the folder where you are going to start creating your project. In our case it will be

D:\PowerPlatform\PCF\PCFCreditCardValidator.

Once we opened the folder, click on the View menu and select Terminal. This will allow us to execute

PowerShell commands right from within Visual Studio Code.

We will use the command we mentioned earlier in previous chapters to initialize the project, by calling the pac

pcf init command.

11 | P a g e

Install project dependencies

After the project has been created, you can navigate to the project directory, and you will notice that a

subfolder with the name of the component has been created. The subfolder contains two files

(ControlManifest.Input.xml and index.ts), which will be discussed later. A generated folder has also been

created which includes the Manifest typescript file.

We can now go ahead and install all the required dependencies that are required. This steps can take a few

minutes to complete. The command to install the dependencies is npm install, as was shown in the screenshot

from the previous task. While this task is executing you will see progression on your command prompt window,

and you might see a few warnings or errors.

You will notice in Visual Studio code that a node_modules folder was created with a lot of subfolders

containing script files. This contains a large variety of available modules that can be added to your typescript

project.

12 | P a g e

Update the Manifest File
After the solution has been initialized, the manifest file will look like the screenshot below. When working with

the first component, we sometimes like to leave the comments in there, but as we start developing more PCF

custom controls, we can remove them.

<?xml version="1.0" encoding="utf-8" ?>

<manifest>

 <control namespace="PCFControls" constructor="PCFCreditCardValidator" version="0.0.1" displ

ay-name-key="PCFCreditCardValidator" description-

key="PCFCreditCardValidator description" control-type="standard">

 <!-

- property node identifies a specific, configurable piece of data that the control expects fr

om CDS -->

 <property name="sampleProperty" display-name-key="Property_Display_Key" description-

key="Property_Desc_Key" of-type="SingleLine.Text" usage="bound" required="true" />

 <!--

 Property node's of-type attribute can be of-type-group attribute.

 Example:

 <type-group name="numbers">

 <type>Whole.None</type>

 <type>Currency</type>

 <type>Decimal</type>

 </type-group>

 <property name="sampleProperty" display-name-key="Property_Display_Key" description-

key="Property_Desc_Key" of-type-group="numbers" usage="bound" required="true" />

 -->

 <resources>

 <code path="index.ts" order="1"/>

 <!-- UNCOMMENT TO ADD MORE RESOURCES

 <css path="css/PCFTaxIdValidator.css" order="1" />

 <resx path="strings/PCFTaxIdValidator.1033.resx" version="1.0.0" />

 -->

 </resources>

 <!-- UNCOMMENT TO ENABLE THE SPECIFIED API

 <feature-usage>

 <uses-feature name="Utility" required="true" />

 <uses-feature name="WebAPI" required="true" />

 </feature-usage>

 -->

 </control>

</manifest>

13 | P a g e

We will start by modifying the control element. The information here is based on what was entered in the pac

pcf init command, so likely there is not much to modify, but we can change the description or other attributes

as required. The final result here should look like this:

<control namespace="PCFControls" constructor="PCFCreditCardValidator" version="0.0.1" display

-name-key="PCFControls.PCFCreditCardValidator" description-

key="Credit Card Control for PCF" control-type="standard">

Next we will create a bound property for this control which will be based on a single line of text in our model

driven application. We will provide the property name, display name key and description, the type of control,

the usage (whether it is bound, input or output), and whether it is required. After making the changes it will

look like this:

<property name="CreditCardNumber" display-name-

key="PCFCreditCardValidator_CreditCardNumber" description-key="Credit Card Number field" of-

type="SingleLine.Text" usage="bound" required="true" />

Finally, we will specify the resources that make up this project. In our case, we will be using a TypeScript file

that will include the code elements, and a stylesheet that will define the look and feel of the control.

 <resources>

 <code path="index.ts" order="1"/>

 <css path="pcfcontrols.css" order="1" />

 </resources>

After making all the changes to the manifest file, and removing all of the comments, the manifest file will be

short and clear.

<?xml version="1.0" encoding="utf-8" ?>

<manifest>

 <control namespace="PCFControls" constructor="PCFCreditCardValidator" version="0.0.1" displ

ay-name-key="PCFControls.PCFCreditCardValidator" description-

key="Credit Card Control for PCF" control-type="standard">

 <property name="CreditCardNumber" display-name-

key="PCFCreditCardValidator_CreditCardNumber" description-key="Credit Card Number field" of-

type="SingleLine.Text" usage="bound" required="true" />

 <resources>

 <code path="index.ts" order="1"/>

 <css path="pcfcontrols.css" order="1" />

 </resources>

 </control>

</manifest>

14 | P a g e

Code the Component File
We will start by looking at the file looks when it is only created. It will contain the four methods that we

described earlier, and we will start by working with that file.

import {IInputs, IOutputs} from "./generated/ManifestTypes";

export class PCFCreditCardValidator implements ComponentFramework.StandardControl<IInputs, IO

utputs> {

 /**

 * Empty constructor.

 */

 constructor()

 {

 }

 /**

 * Used to initialize the control instance. Controls can kick off remote server calls and

 other initialization actions here.

 * Data-set values are not initialized here, use updateView.

 * @param context The entire property bag available to control via Context Object; It con

tains values as set up by the customizer mapped to property names defined in the manifest, as

 well as utility functions.

 * @param notifyOutputChanged A callback method to alert the framework that the control h

as new outputs ready to be retrieved asynchronously.

 * @param state A piece of data that persists in one session for a single user. Can be se

t at any point in a controls life cycle by calling 'setControlState' in the Mode interface.

 * @param container If a control is marked control-

type='standard', it will receive an empty div element within which it can render its content.

 */

 public init(context: ComponentFramework.Context<IInputs>, notifyOutputChanged: () => void

, state: ComponentFramework.Dictionary, container:HTMLDivElement)

 {

 // Add control initialization code

 }

 /**

 * Called when any value in the property bag has changed. This includes field values, dat

a-

15 | P a g e

sets, global values such as container height and width, offline status, control metadata valu

es such as label, visible, etc.

 * @param context The entire property bag available to control via Context Object; It con

tains values as set up by the customizer mapped to names defined in the manifest, as well as

utility functions

 */

 public updateView(context: ComponentFramework.Context<IInputs>): void

 {

 // Add code to update control view

 }

 /**

 * It is called by the framework prior to a control receiving new data.

 * @returns an object based on nomenclature defined in manifest, expecting object[s] for

property marked as “bound” or “output”

 */

 public getOutputs(): IOutputs

 {

 return {};

 }

 /**

 * Called when the control is to be removed from the DOM tree. Controls should use this c

all for cleanup.

 * i.e. cancelling any pending remote calls, removing listeners, etc.

 */

 public destroy(): void

 {

 // Add code to cleanup control if necessary

 }

}

The import and export portions of the file remain untouched, as well as the constructor. We will start by

declaring variables above the construction that can be used as shared variables within the class. The list of

global variables includes the PowerApps Component Framework required parameters (context, notify changes

and the output HTML Div container), the HTML elements that will make up the control, and an event listener.

 // Required private parameters of the control

 private _context: ComponentFramework.Context<IInputs>;

 private _notifyOutputChanged: () => void;

 private _container: HTMLDivElement;

 // HTML Elements that will be used in the control

16 | P a g e

 private _creditCardNumberElement: HTMLInputElement;

 private _creditCardTypeElement: HTMLElement;

 private _creditCardErrorElement: HTMLElement;

 // String variable to store the credit card number

 private _creditCardNumber: string;

 // Event listener for changes in the credit card number

 private _creditCardNumberChanged: EventListenerOrEventListenerObject;

The init method

The init method contains all the initialization code for the typescript file This includes assigning values to global

variables, binding control events to the delegate, skinning the control so that it looks like a control that is

similar in look to the Unified Interface and finally creating the div element.

To assign the signature values to the public variables we will call the following lines of code. This will be similar

in most of your projects. Within the init method we will start by adding the following code:

 // assigning environment variables.

 this._context = context;

 this._notifyOutputChanged = notifyOutputChanged;

 this._container = container;

Next we will add code to respond to the event of the control as shown in the function below.

 // Add control initialization code

 this._creditCardNumberChanged = this.creditCardChanged.bind(this);

Then, we will customize the control and add the attributes and an event to the new Input element and image

element. The input element will be where the user will enter their credit card number on the CRM form, and the

image element will be the image that will be displayed when the user enters the correct credit card number

that corresponds to the rules of the card.

 // Add the textbox control, styling and event listener

 this._creditCardNumberElement = document.createElement("input");

 this._creditCardNumberElement.setAttribute("type", "text");

 this._creditCardNumberElement.setAttribute("class", "pcfinputcontrol");

 this._creditCardNumberElement.addEventListener("change", this._creditCardNumberChange

d);

17 | P a g e

 // Add the image control that will display the logo of the credit card

 this._creditCardTypeElement = document.createElement("img");

 this._creditCardTypeElement.setAttribute("class", "pcfimagecontrol");

 this._creditCardTypeElement.setAttribute("height", "24px");

We will also add HTML elements to display an error message under the HTML control in case the credit card

number is invalid. The logic of the error uses similar styles as that of Dynamics 365 Unified Interface.

 // Add an error visual to show the error message when there is an invalid credit card

 this._creditCardErrorElement = document.createElement("div");

 this._creditCardErrorElement.setAttribute("class", "pcferrorcontroldiv");

 var creditCardErrorChild1 = document.createElement("label");

 creditCardErrorChild1.setAttribute("class", "pcferrorcontrolimage")

 creditCardErrorChild1.innerText = " ";

 var creditCardErrorChild2 = document.createElement("label");

 creditCardErrorChild2.setAttribute("class", "pcferrorcontrollabel")

 creditCardErrorChild2.innerText = "Invalid Credit Card Number entered.";

 this._creditCardErrorElement.appendChild(creditCardErrorChild1);

 this._creditCardErrorElement.appendChild(creditCardErrorChild2);

 this._creditCardErrorElement.style.display = "none";

Finally, we will add the three elements (text box, image and error HTML element) to the container that was

defined and passed by the control.

 this._container.appendChild(this._creditCardNumberElement);

 this._container.appendChild(this._creditCardTypeElement);

 this._container.appendChild(this._creditCardErrorElement);

The updateView method

The updateView method is called when any value in the property bag changes, which includes field values,

datasets, global values (such as container width and height), control metadata values (such as labels or

visibility). The context parameter is the entire property bag that is available to the control via the context

object. This parameter contains the values that are set up by the system customizer mapped to names defined

in the manifest as well as utility functions.

For our credit card field, we will get the logical name of the field, and set the value to its formatted value.

18 | P a g e

 var crmCreditCardNumberAttribute = this._context.parameters.CreditCardNumber.attribut

es.LogicalName;

 // @ts-ignore

 Xrm.Page.getAttribute(crmCreditCardNumberAttribute).setValue(this._context.parameters

.CreditCardNumber.formatted);

Notice the @ts-ignore comment above the Xrm.Page.getAttribute call. When we use the Xrm namespace calls

that are used in JavaScript in Dynamics, we have to tell the compiler to ignore these calls so that it does not

error out.

We also add to the updateView method a notification in case there is a validation error. This is a notification

that appears on the top of the form, and disappears after a few seconds.

 if (this._creditCardErrorElement.style.display != "none")

 {

 var message = "The credit card number is not valid.";

 var type = "ERROR"; //INFO, WARNING, ERROR

 var id = "9444"; //Notification Id

 var time = 4000; //Display time in milliseconds

 // @ts-ignore

 Xrm.Page.ui.setFormNotification(message, type, id);

 //Wait the designated time and then remove the notification

 setTimeout(function () {

 // @ts-ignore

 Xrm.Page.ui.clearFormNotification(id);

 }, time);

You can modify this as needed.

The getOutputs method

The getOutputs method is called by the framework prior to the control receiving new data. It returns an object

for a property that is marked as bound or output. The getOutput will return the Credit Card Number in this

method class:

 public getOutputs(): IOutputs

 {

 return {

 CreditCardNumber: this._creditCardNumber

 };

 }

19 | P a g e

The event handler method

The event method handles the validation of the code and will call the notify output changed event at the end

in order to handle the processing. In our particular case, we are looking the check that the credit card number

is valid and that the length is correct for that type of credit card.

We check using regular expressions if this is a Visa, Mastercard, American Express or Discover card. If the card

is one of the above, we will display the image of the card next to the text control. If the card is not valid, we will

display an error message.

At the end of the method we call the notifyOutputChanged to let the notify the component that it needs to

update the output.

 public creditCardChanged(evt: Event):void

 {

 // Variable declarations

 var _regEx: RegExp | null = null;

 var imageUrl = "";

 var isValid = false;

 var creditCardNumber = this._creditCardNumberElement.value;

 // Does Credit Card have a value

 if (creditCardNumber != null && creditCardNumber.length > 0)

 {

 // Is this a Visa card?

 _regEx = new RegExp('^4[0-9]{12}(?:[0-9]{3})?$');

 if (_regEx.test(creditCardNumber))

 {

 isValid = true;

 imageUrl = "https://xyz.blob.core.windows.net/shared/imgs/ico/visa24.png";

 }

 if (!isValid)

 {

 // Is this a Mastercard card?

 _regEx = new RegExp('^(?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-

9]{2}|27[01][0-9]|2720)[0-9]{12}$');

 if (_regEx.test(creditCardNumber))

 {

 isValid = true;

 imageUrl = "https://xyz.blob.core.windows.net/shared/imgs/ico/mc24.png";

 }

 }

20 | P a g e

 if (!isValid)

 {

 // Is this an American Express card?

 _regEx = new RegExp('^3[47][0-9]{13}$');

 if (_regEx.test(creditCardNumber))

 {

 isValid = true;

 imageUrl = "https://xyz.blob.core.windows.net/shared/imgs/ico/amex24.png"

;

 }

 }

 if (!isValid)

 {

 // Is this a Discover card?

 _regEx = new RegExp('6(?:011|5[0-9]{2})[0-9]{12}');

 if (_regEx.test(creditCardNumber))

 {

 isValid = true;

 imageUrl = "https://xyz.blob.core.windows.net/shared/imgs/ico/disc24.png"

;

 }

 }

 // Is the card number entered valid?

 if (isValid)

 {

 this._creditCardTypeElement.setAttribute("src", imageUrl);

 this._creditCardNumber = creditCardNumber;

 this._creditCardErrorElement.style.display = "none";

 }

// Not valid

 else

 {

 this._creditCardTypeElement.setAttribute("src", "https://xyz.blob.core.window

s.net/shared/imgs/ico/redwarning.png");

 this._creditCardNumberElement.removeAttribute("src");

 this._creditCardNumber = "";

 this._creditCardErrorElement.style.display = "block";

 }

 }

 this._notifyOutputChanged();

 }

21 | P a g e

The destroy method

The destroyer method is used in many programming language to clean up control, remote calls or listeners

that might still be consuming resources.

Below is the code for the destroy methods, which in our case is used only to remove the event listener change

event from the bound control.

 public destroy(): void

 {

 // Add code to cleanup control if necessary

 this._creditCardNumberElement.removeEventListener("change", this._creditCardNumberCha

nged);

 }

22 | P a g e

Design the Stylesheet
The following styles are used by the control, and set to display the control in a way that is similar to the way

controls look in Model-Driven (Unified Interface) applications. This includes the control, image and error

message.

.pcfinputcontrol

{

 border-color: transparent;

 padding-right: 0.5rem;

 padding-left: 0.5rem;

 padding-bottom: 0px;

 padding-top: 0px;

 color: rgb(0,0,0);

 box-sizing: border-box;

 border-style: solid;

 border-width: 1px;

 line-height: 2.5rem;

 font-weight:600;

 font-size: 1rem;

 height: 2.5rem;

 margin-right: 0px;

 margin-left: 0px;

 text-overflow: ellipsis;

 width: 90%

}

.pcfinputcontrol:hover

{

 border-color: black;

}

.pcfimagecontrol

{

 padding-left: 5px;

 vertical-align: middle;

}

.pcferrorcontroldiv

{

 display: inline-flex;

 padding-top: 0.5rem;

23 | P a g e

 padding-bottom: 0.5rem;

 padding-left: 0.5rem;

 padding-right: 0.5rem;

 background-color: rgba(191, 9, 0, 0.075)

}

.pcferrorcontrolimage

{

 font-family: "Dyn CRM Symbol", "Segoe MDL2 Assets";

 font-weight: 600;

 font-size: 1rem;

 line-height: 2rem;

 color: rgb(191, 9, 0);

 padding-right: 0.5rem;

}

.pcferrorcontrollabel

{

 display: initial;

 color: rgb(191, 9, 0);

 font-weight: 600;

 font-size: 1rem;

 font-family: SegoeUI-Semibold, "Segoe UI Semibold", "Segoe UI Regular", "Segoe UI";

 line-height: 2rem;

 word-break: break-word;

}

24 | P a g e

Build and Test the control
A PCF control is deployed into a Model-Driven app as a solution with its relevant components. The first step

that needs to happen is for us to compile/build the code, and test it outside of Dynamics to see if it behaves

properly.

We can still use the Terminal command npm run build to build the component and make it available for

testing

You will notice a Succeeded message at the end of the command if no errors are encountered.

Once the build has been completed, we can run the npm start command to start the testing the application in

the PowerApps component framework Test Environment.

The first screenshot shows how the control will be display in the test environment when no errors occur.

25 | P a g e

In case of errors, we will be able to see the way the control behaves:

The code that displays the error on the top of the Model-Driven app will only be displayed within the Model-

Driven app and not in the PCF Test environment.

26 | P a g e

Build the solution
Now that the component has been built and tested, we are ready to prepare the solution that can be deployed

into our Microsoft Dynamics 365 environment. The solution will be a zip file that can be installed via the import

wizard into our Dynamics environment.

The first thing that we need to do is create a folder for the deployment of the solution. We will name the folder

the same as the name we want to call our solution. In this case, I created a folder called PCFCreditCardSolution.

The following steps can still be done either from within Visual Studio Code or Developer Command

Prompt/Developer PowerShell for Visual Studio.

Creating the solution files

The pac solution init command will allow us to create the solution within our current folder. The command

requires us to provide a publisher name and a customization prefix, same as with our CRM solutions. The full

command is shown below:

pac solution init –-publisher-name [THE_NAME_OF_THE_PUBLISHER] –-publisher-prefix

[PREFIX_TO_USE_WITH_PUBLISHER]

In our case I will created a publisher called PCFControls, and use the customizationPrefix PCFC:

pac solution init –-publisher-name PCFControls --customizationPrefix PCFC

The following screenshot shows the results after we run this command:

27 | P a g e

Add the solution reference

After we have verified that the creation of the solution files was successful, we will need to add the custom

control reference. We do this by calling the pac solution add-reference, and providing the directory where the

PowerApps Component Framework (PCF) project is located. In our case the directory of the

D:\PowerPlatform\PCF\ CreditCardNumberValidator.

You will receive a message that says: Project Reference successfully added to CDS project.

Running MSBuild

The final two steps to generate the solution zip files are to run the msbuild command. These steps can ONLY

be run from within the Developer Command Prompt/Developer PowerShell for Visual Studio.

The first time we will run it with the /t:restore parameter, and then run it by itself.

28 | P a g e

Next we will run msbuild in the same directory. We will be able to see the solution file required to import after

that.

The package will complete with a message of Build succeeded.

29 | P a g e

Deploy the solution
Now that the solution has been created we are ready to deploy it in our environment. We will first import the

new solution into our environment, create the field inside our Model-driven application, and finally test it out.

Importing the solution

At the time of writing this guide, importing solutions is still using part of the old import functionality, but we

will connect to our PowerApps application to implement this. Start by navigating to web.powerapps.com, and

login with your admin credentials. Make sure that you are connected to the right environment, and then click

on Solutions on the left side navigation.

Once you navigated to the solutions area, click on the Import button:

In the Select Solution package window, click on Choose File, and then navigate in the popup Open window to

the directory containing your zip file. In our case this will be the bin/Debug folder under the

PCFCreditCardSolution, as shown in the image below.

30 | P a g e

Select the file and click Open in the Open window.

Click Next to see the solution information, and then click Import to start the Import process of the solution.

Once the import has been completed, click on Publish All Customizations button to complete the process.

When the publishing is done, click on Close.

Customize the entity

Open a solution, and select the entity where you want to create the field to be used by the control. In our case

we will create a field called CreditCardNumber of data type text.

31 | P a g e

Navigate to forms, and add the control to

the form. Open the properties of the

control, and in the Controls tab of the

properties window, click on Add Control,

select the control that you created and set

it to display on Web, Phone and/or Tablet.

32 | P a g e

Test the deployed solution
Now that the solution has been deployed, you can test it out.

Open the record type where you created the solution, and enter a valid credit card number. The control will

display the correct credit card image.

Now change the credit card number, so that the number is no longer valid and you will see the error messages

displayed in both the control and at the top of the form.

33 | P a g e

Contributions

Author

Aric Levin, Business Applications MVP

MVP Contributions

Alex Shlega

Andrew Butenko

Andrew Ly

Guido Preite

Microsoft Contributions

Hemant Gaur

34 | P a g e

Resources

Community PCF Gallery

PowerApps Community PCF Framework Forum

PowerApps Component Framework Documentation

https://pcf.gallery/
https://powerusers.microsoft.com/t5/PowerApps-Component-Framework/PCF-Framework/td-p/382714
https://docs.microsoft.com/en-us/powerapps/developer/component-framework/overview

